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ASYMPTOTIC EXPANSIONS OF THIN AXISYMMETRIC CAVITIES 

A. G. Petrov UDC 532.58.33 

The theory of flow around a thin body [i] enables one to obtain expansions for the 
potential of the velocity field in terms of a small parameter X (thickness of the body) 
with any degree of accuracy. The first six terms of this expansion have the following orders 
of magnitude: i, X 2 in • X 2, x~In2x, X 4 in• X 4. In most works on cavitating flows, cal- 
culations are carried out by using only the two first terms of the expansion, e.g., [2]. 
The problem of determining the free boundary reduces, in that approximation, to solution 
of an ordinary differential equation. For practical reasons one should take into account 
also the third term of the expansion together with the second, which is of the order close 
to X 2, while the subsequent three terms of the expansion are of essentially smaller, close 
to X ~, order. In presence of the term X 2, the potential of the flow is expressed by the 
integral operator acting on the function defining the boundary of the body placed in the 
stream [i]. Therefore, the equation of the free boundary is a nonlinear integrodifferential 
equation. It seems that only [3] contains calculations in this approximation. The solution 
of the integrodifferential equation is shown in the form of an expansion in negative powers 
of in X. In this work the Riabushinskii scheme is used in order to obtain an asymptotic 
expansion for the drag force F in powers of a small parameter gl for arbitrary thickness 
of the cavitating body. The first term of this expansion agrees with the asymptotic formula 
given in [4]. For the flow in the Kirchhoff scheme (a = O) an expansion is obtained for 
x § ~ for the free-jet boundary. Its asymptotic behavior agrees with the law of jet expansion 
obtained independently by Gurevich and Levinson [5]. 

i. Theory of Nonseparating Flow around a Thin Body 

Here we consider the problem of flow around a thin body of rotation by a stationary 
stream of nonviscous incompressible fluid. Let all lengths be referred to the half-length 
of the body ~x, velocities be referred to the velocity of the incoming stream at infinity v~, 
and the boundary of the body in the meridional plane be defined by the equation 

y = xf(x), - - l ~ x ~ l .  ( 1 . 1 )  

The s m a l l  p a r a m e t e r  X << 1 i s  a m e a s u r e  o f  t h e  r e l a t i v e  t h i c k n e s s  o f  t h e  body  whose s h a p e  
i s  g i v e n  by t h e  f u n c t i o n  f ( x ) .  The p o t e n t i a l  $ o f  t h e  v e l o c i t y  f i e l d  i s  t o  be  found  f rom 
t h e  s o l u t i o n  o f  t h e  b o u n d a r y - v a l u e  p r o b l e m  

Ox ~ ag 2 . .~ ~ O, ( 1.2 ) 

o~ I o~ df , 

~ - ~ x ,  x 2 + y 2 _ ~  ~ .  
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The analytical method of matching asymptotic expansions for the solution of (1.2) 
in [i]. Following that method, it is possible to obtain an expansion for the potential 

in a neighborhood of the thin body 

@ = x + L ( z ' )  § 2z ' In~2.+ 0(%~In~%), ( 1 . 3 )  

where the function z(x) and the linear operator L are determined by the formulas 

z = ( l /4)~]~(x) ,  L(z) = - - l n ( l  - -  x2)z(x) -f- I(z) ;  ( 1 . 4 )  

1 

~ z (x) - ~ (y) 
I (z) T T C f l  dg. ( 1 . 5 )  

- - 1  

is shown 

The convenience of the form of the integral (1.5) is noted in [6] when the distribution 
of the cross-sectional surface is given by a polynomial. In this case the integrand also 
becomes a polynomial. 

Starting with the obtained asymptotic formula for the potential (1.3) it is not diffi- 
cult to determine the velocity at the boundary of the thin body: 

Zt2 
v2 (~162 ~ ( ~ 1 7 6  2 1 + 2  d L ( z , ) + 2 z , , l n z + _ f . + O ( x ~ l n Z z ) .  - ; ' = \ a z /  + \ a y ]  = ~ : (1.6) 
12oo 

If the following transformation is employed: 

Zr ~r 
__d L ( z ' ) =  (i) ( - - t ) _ z ,  l n ( t _ x  2 )+  I[z"~ dx i - - x  l t x  ~ +'~ 

the formula (1.6) will take the form 

v~ 2z" In i _z z 2 z '2 = I + - -  + 21(z") +-7-  § 2 
Uoo 

Z I z ' ( l )  _ 2  ( - - t )  
l--x t +----7-" ( 1 . 7 )  

The eigenfunctions of the linear integral operator I are the Legendre polynomials Pn(x), 
and the eigenvalues are given by the formula 

I ( P n ) = ~ n P n ,  ~0=0 ,  ~ n = 2  t + - f f + , . .  + - - ~  n ~ t .  ( 1 . 8 )  

In  t h i s  way, when the  boundary of  the  t h i n  body z (x )  i s  r e p r e s e n t e d  by a po lynomia l ,  
t h e  v e l o c i t y  v i s  c a l c u l a t e d  from ( 1 . 7 )  and ( 1 . 8 )  g e n e r a l l y  w i t h o u t  use  of  q u a d r a t u r e s .  

2. Variational Formulation of the Problem of Cavitating 
Flow. Force Acting on the Cavitating Body 

Here we consider an axisymmetric flow, separating from the surface, around an arbitrary 
body according to the Riabushinskii scheme. From formula (1.6) we obtain the equation of 
free boundary where the condition v = vk is satisfied: 

P2 
z._,m d L ~ v~ 

z" In z + 2 z ' -  dx (z') = .z -~-~ o I (2.1) 
17OO 

(o is the cavitation number). 

A variational formulation can be given to Eq. (2.1) by employing the Riabushinskii 
variational principle: the functional Vo - M reaches an extremal value at the free energy 
(V and M are the volume and the added mass of the body) [8]. 

The added mass is determined from the well-known formula 

M = - - ~  ( 0 - -  x) n~dS, n~dS = 4~z'dx~ 

where the integral is taken over the surface of the axisymmetric body y = xf(x), nx is pro- 
jection of the external normal to the surface on the x axis; dS, surface element between 
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two cross sections at points x and x + dz. Substituting expression (1.5) for ~ in the inte- 

gral, we have 

1 

M = -- 4n J' (z' in z + L (z')) z'dx. 
--1 

The volume of the axisymmetric body is 

1 

V = 4~ ~ zdx. 
--1 

Hence, in accordance with the Riabushinskii principle, the functional 

1 

U = (Vcr-- M)/4n = ~ ((rz + z'21nz + z 'L ( z ' ) ) dx  ( 2 . 2 )  
--1 

takes an extremal value at the free boundary. 

It is not: difficult to show that a solution of Eq. (2.1) is an extremum of the function- 
al U. Equation (2.1) allows one to determine the shape of the cavity with a relative error 
of • in 2 • However, calculation of the force acting on the cavitating body from (2.1) 
by direct integration of the pressure on its surface is impossible because, in the neighbor- 
hood of the singularity at x = -i the expansion (2.1) is meaningless, and the pressure at 
this point has a nonintegrable singularity. 

This difficulty can be overcome in the following way. It turns out that the drag force 
can be expressed by the extremal value of the functional (2.2) U0: 

F = 3apv~l~U o (1 + 0 (l/l~)), ( 2 . 3 )  

where 2~x is the length of the cavity, and ~ is a characteristic dimension of the cavitating 
body. For a cone and disc this formula, as obtained by Garabedian [4, 5], is exact. It 
was shown in [8] that its error for cavitating bodies of arbitrary form for o + 0 converges 
to zero like the inverse of the length of the cavity. The relative error of formula (2.3) 
is of the order of s and does not exceed the relative error of Eq. (2.1), X 2 in 2X �9 In 
this way, in addition to the existing theories [1-3], Eq. (2.3) allows one also to determine 
the force acting on the cavitating body of arbitrary form with an error controlled by the 
asymptotic approximation (2.1). 

3. Calculation of the Free Boundary by Method of Matching 
the Asymptotic Expansions 

Following [3], it is possible to introduce two separate parameters of thinness: for 
the cavitating body XI, and for the cavity X (for the disc XI = ~). We will consider the 
flow around a cavitating body of arbitrary thickness X/XI + 0 based on the Riabushinskii 
scheme. Dimensions of the section with the larger parameter of thinness become infinitely 
small in the limit, allowing one to consider the cavity as a thin body in this case as well. 

External Expansion. In solving Eq. (2.1) it is convenient to introduce a small parameter 
e and an unknown function ~ related to the cavitation number o and to the function z by 
the formulas 

= e ] n ( l / e ) ,  z - -  e~ .  ( 3 . 1 )  

Now ( 2 . 1 )  can be w r i t t e n  in  t h e  form 

~ " + - f = e l  ~ Gin + I ( ~ )  ( 3 . 2 )  t__x2 

Without loss of accuracy of the considered approximation at the limit points, we impose 
the conditions 
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~(t) = ~(--t~ ---- O. ( 3 . 3 )  

In  f a c t ,  in  E - n e i g h b o r h o o d s  o f  t h e  l i m i t  p o i n t s  1 and - 1 ,  t h e  v a l u e s  r as  w i l l  be 
seen from the solution, appears as a small number of the order of e (physically it means 
that the square of the width of the cavitating body is at least e times smaller than the 
square of the cavity's midship section). Thus, the more accurate conditions ~(i) - e can 
be replaced by (3.3), causing an error of the order of g in determining ~, and an error 
of the order of s2 in determining z. That lies outside the limits of accuracy of the con- 
sidered approximation. 

The solution of Eq. (3.2) can be sought in the form of expansion in powers 

2 
= ~0 -~ 81~i -~ 81~i ~- -'. (3.4) 

All terms of expansion (3.4) are asymptotically accurate as the error of the order 
of e is transcendentally small compared to the parameter el (it decreases faster than any 
power ~i n when g z + 0). 

Substituting (3.4) and (3.2) for ~0 and ~i, we obtain 

pp 
~0 + 1/2 = O, 

The solution,. satisfying conditions (3.3), takes the form 

(i -- xD; ~0 = T 

( t  t l n 2 ) ( t - - x 2 ) - - + ( l + x ) l n ( l +  

t 1 ( 1 - - x )  l n ( l - - x )  + y l n 2 .  4 

(3.5) 

x)-- (3.6) 

The equation for the zero-order approximation for ~0 and its solution (3.5) are given in 
[2], and the second approximation (3.6) can be found in [3]. 

We will now determine the force acting on the cavitating body and also the degree of 
linear extension of the cavity. Substituting (3.4)-(3.6) in (2.2), we obtain an expansion 
in powers of e~ of the extremum of the functional U0: 

Substituting (3.7) in (2.3), we find 

F = npu~l~s (t -- In 2) s x .... 

Finally, the solution of (3.4)-(3.6) allows one to determine the ratio of the half-width 
s of the cavity to the half-length s 

2 
%2 = l u / l  ~ = 4z  (O) a ( t + a l + . . . ) .  ( 3 . 9 )  

I t  i s  v e r y  i m p o r t a n t  t h a t  e x p a n s i o n s  ( 3 . 8 ) ,  ( 3 . 9 )  a r e  u n i v e r s a l  and i n d e p e n d e n t  o f  
the geometric characteristics of the cavitating body. Its shape introduces into these expan- 
sions transcendentally small (as compared to el) corrections. 

Internal Expansion. In a small neighborhood of the point x = -i it is convenient to 
introduce the internal variables X and Z 

l-~x = 9X~ z = ~Z. (3.10) 

Hence the cavity transforms by similarity into its image with the length 2Ex = 2/~. The 
small parameter ~(e) + 0 for e + 0. The exact relationship ~(e) is determined from the 
matching conditions of both solutions. 
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For the variables defined in (3.10), Eq. (2.1) takes the form 

2 t x 

Z" In Z + z'22Z dX ~d2 Z ' y l n I Y - - X I s g n ( Y - - X ) d Y +  ~" e ln--t "e 
0 

Multiplying both sides of this equation by Z', and taking the limit s § 0, we obtain 

Z x 
d2 ; ' 

d (Z'2 in Z) = - -  2Z' lira Zy In I Y --  X I sgn ( Y - -  X) dY. 
d--~ z~-~ d-~ o 

(3. iz) 

It can be shown that the integral of Eq. (3.11) for X § ~ has the asymptotic expression 

Z'Zln Z = 1 9 +  . - - ,  ( 3 . 1 2 )  
i6 ( ln  X) ~ 

where dots stand for terms of higher order of smallness for X + ~. 

Hence, it: is not difficult to find the main asymptotic behavior for Z(X) when X + ~: 

Z' = (In X) - l / zq - . , . ,  Z = X(ln X) -1/2. ( 3 . 1 3 )  

Matching Internal and External Expansions. In order to match the expansions (3.4) 
and (3.13) in the intermediate limit ~ + 0, one introduces an intermediate variable ~, and 
a small parameter n(e) in the following way [i]: 

t § x = q~, X = ~]~/~, ~ - + 0 ,  ~ ] / e - ~ .  

For fixed ~, the main (in orders of magnitude of the small parameter N) terms of the 
external expansion (3.4)-(3.6) have the form 

z = e~0 + esl~ 1 + . . . . .  T eq~ 41n(t/e) q ~ l n ~  ' 

and t h e  main t e rms  o f  t h e  i n t e r n a l  e x p a n s i o n  ( 3 . 1 3 )  have  t h e  form 

z = q ~  (In ~ q +  ln--~-~)-~/2 = ~ ( l n ~ ) - ~ / 2 1 ] ~ - - ~  (In--~-~)-a/~lnq~.  

From the matcihing conditions for the internal and external expansion, it follows that the 
coefficients of the terms q~ and q~ in q$ must be equal. In this manner, the asymptotic 
expansions match when 

e = 2~(in(I/~t))-i/2 ~ ... (3.14) 

Asymptotic Law of Jet Expansion. It is easy to see that Eq. (3.11) is invariant under 
transformations of the one-parameter group defined by x = cX, z = c2Z. From this and from 
formulas (3.12) and (3.13) we obtain the one-parameter series of geometrically similar asymp- 
totic forms of the free surface, where 

Z '2 In (Z/c 2) = c 2 --  (9/16)c2(ln (x/c))-e+...; ( 3 . 1 5 )  

z = y2/4 = ex(ln (x/c))-l/~ +. . .  ( 3 . 1 6 )  

The cavity's length i/~ increases c times, so ~x = c/~; hence, by means of formulas (3.8) and 
(3.14), one can determine the limiting expression for force F when D + 0: 

F = zpv~c29-z ! e2 In (t/e) ~ 2apv~c~. 2 (3.17) 

The asymptotic rule (3.15) obtained from the theory of thin bodies, besides the Gure- 
vich-Levinson main asymptotic character (3.17) [5, 8], allows one to determine the higher- 
order terms. 
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LARGE-AMPLITUDE SOLITARY INTERNAL WAVES IN A TWO-LAYER FLUID 

N. V. Gavrilov UDC 532.539 

The theoretical analysis of solitary waves at an interface separating two fluids of 
different densities is usually based on the Korteweg-de Vries equation [1-3], which has 
been derived not only on the standard assumption used in the theory of long waves, that 
the ratio of the fluid depth to the wavelength is small, but also with the additional as- 
sumption of relative smallness of the amplitude in comparison with the depth of the fluid. 
Consequently, the Korteweg-de Vries equation describes only small-amplitude solitary waves. 
Some experimental information on the range of validity of such modes may be found in [4]. 
A theoretical analysis of internal solitary waves without any constraints on their amplitude 
has been carried out in [5], where layers that move relative to one another are investigated 
in addition to layers that are at rest in the unperturbed state. Better experimental cor- 
roboration of the results of [5] has been obtained [4] for the velocity of wave propagation. 
The present article gives experimental data on the profiles of internal solitary waves, 
which are also in very good agreement with the model [5]. 

The waves were generated at an interface separating two layers of immiscible fluids 
of different densities, which were bounded below by a horizontal bottom and above by an 
impermeable horizontal cover plate. The principal notation and diagrams of the experimental 
arrangements are shown in Fig. la, b. Here H is the distance between the bottom and the 
cover plate, h0 is the depth of the ~nperturbed lower layer, h is the depth of the perturbed 
lower layer, q = h - h 0 is the deviation of the interface from the equilibrium position, 
qm is the amplitude, v is the velocity of propagation of the solitary waves, and P0, P < P0, 
u 0, and u are the densities and velocities of the lower and upper layers, respectively. 
A fixed xy rectangular coordinate system is used. 

A rectangular duct with a working section of length 250 cm, width 18 cm, and height 
6 cm (Fig. la) was used, as in [4], for the experimental creation of solitary waves in the 
case of fluids moving in the unperturbed state. The lower fluid could move with a velocity 
u 0 distributed uniformly along the vertical in the initial cross section, whereas only a 
slight circulatory motion took place in the upper layer in connection with friction at the 
interface. The working fluids were a dilute solution of salt (NaCl) in distilled water 
(P0 = 1 g/cm s) and kerosene (p = 0.8 g/cm3). The waves were generated by a barrier in the 
form of a vertical plate set up at the exit from the duct and projecting above the bottom 
to a height b I. Once a steady flow regime with depth h 0 of the lower fluid had been estab- 
lished, the barrier was raised smoothly to a height b 2 (for the generation of hummock-type 
waves) or was lowered (for the generation of crater-type waves) and was then brought back 
to its original position. 
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